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Abstract

Optimizing the Fisher ratio is well established in statistical pattern recognition as a

means of discriminating between classes. I show how to optimize that ratio for optical

correlation intensity by choice of filter on an arbitrary spatial light modulator (SLM). I

include the case of additive noise of known power spectral density.

1. Introduction

There is a long and venerable history I in optical correlation pattern recognition

(OCPR) of building filters to permit the discrimination between two classes of objects on

the basis of their correlation intensities. Usually we would like for objects in the "accept"

class to have large intensity and conversely for the "reject" class. The classical Fisher

linear discriminant (FLD) reduces a highly dimensioned (and possibly complex) vector to

a single quantity with the intention that it can be thresholded as a discriminant between

classes. The classical FLD operates as a linear transform of the input object, and its

optimizing filter best separates the means of the transformed classes, as normalized to

their widths. In general it is a good metric to optimize, and under some circumstances

(e.g. identical normal distributions) the FLD is an exactly optimal (minimal error)

classifier. I have not previously seen the Fisher ratio analytically optimized for OCPR.

In OCPR we work with intensities, not just the complex field amplitude that is the last

linear stage in the optical correlation process. Thus we can not tell the difference

between complex correlations of the same amplitude even if their values separate well in

the complex plane. We take the Fisher ratio for OCPR to be the squared difference

between mean correlation intensities for two classes of objects, divided by the sum of the

correlation variances for those two classes (see Eq. (1)). I show how to maximize the

optical Fisher ratio by choice of a filter to be realized on an arbitrary SLM. I include

additive noise in determining the normalizing variances.

2. Formulating the problem

We assume that there is an optimal filter; a necessary condition for its optimality is

that the partial derivative of the filter with respect to allowed changes is zero. In practice

this laboratory has not found any problem with local maxima, nor with the fact that the

specification for the worst filter nominally looks the same. A frequency's filter value can

not be optimally chosen without regard to all other frequencies' filter values, the signals

to be discriminated, and the noise. An explicit feature here is that all such information is

condensed to a comparatively very few parameters to search over (there is essentially one

complex scalar per training image to search over - not bad, compared with the typical

filter's tens of thousands of frequencies!). Then the optimal filter value at the frequency
under consideration must be chosen from the set of realizable values.

We adopt the following nomenclature. C is a class (A for accept, q_ for reject).

()c is the expectation of a quantity over C. The m-th frequency's value of the



transformedsignalis Sm= A,_ exp(j¢ m) and of the filter, H,, = Mm exp(j0,,). The

central correlation field is D = Bexp(jfl) = _., HkS k where the indicated sum is over all
k

frequencies (we use the one-dimensional notation), and the correlation intensity is

2 arising partly in different correlationI = B 2 . Total variance over class C is Crcr,

2=(( (_ _ ) ,and partly inintensities for the objects within training class C, o"c I-l,c, 2
C

additive input noise. The power spectral density of the input noise is P,m at the m-th

2 2

frequency, and the input noise's contribution to variance is o', _ H_ 2: IPo,=EM, Pok.
k k

We assume the effect of noise on intensity has zero mean (else its effect can be

incorporated into the class means for intensity, and so we will take no further notice of it
2 2 2

here). The total variance is modeled as Crcr = crc + cr. With these definitions we can set

up the optical Fisher ratio, J, and optimize it.
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defining the numerator and denominator of J.

3. Optimizing the filter

The optimization strategy is based on that of Juday 2'3. We take the radial

component of the gradient of J in the complex plane of values for H m, and from that

infer the azimuthal component, and thus deduce the optimal realizable values for n m ,

Taking the radial derivative in the complex plane of H m,
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and we see that we need several partial derivatives. As shown by Judaf,

OI
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and restriction to a class and taking the expectation is straightforward. From the

modeling of the variance,
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In a little more detail than in the definition,
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from which
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Reorganizing and inserting Eq. (6) into Eq. (4),
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Now consider an operator [3 such that

exp(j0)[3 Rexp(ja) = RcosOcosa + Rsin0sina (8)

gives the projection of R exp(ja) onto the unit vector in the complex direction exp(j0).

We regard an equation like the first part of Eq. (7) as expressing the gradient of a quantity

as it interacts with the complex unit vector exp(j0) - and further, that the gradient is

uniform [later we shall look at the last term in Eq.(7)]. From this perspective we build

VmJ, the gradient of J as a function of position in the complex plane of values for H m .

We assemble Eqs.(3) and (7) into Eq. (2), with the result
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In the term of Eq. (9) that is the product of sums, we interchange summation order and

swap indices so that it becomes a sum on Sim. Then we can express VmJ as a sum over

the training images' spectral conjugated transforms $7,, (and the MmP, m term).
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The terms in square braces are not functions of m, but there is one for each reference

image. Therefore each can be replaced by a complex constant T_, now giving

VmJ = _._ T_ST,_ - T.o,.,MmP . (11)
icAu_

which implicitly defines the set of complex coefficients {T_;i e A u W t..)noise}, one per

training object plus a real-valued one for the input noise (if that noise is present). The

coefficients represent the necessary information as mentioned in the first paragraph of

Section 2. We do not know the coefficients a priori. However, we know they exist, and

we can search for their values and confirm them by comparing Eqs. (10) and (11) when

we have maximized J in the search. Following the gradient-of-metric logic developed in

section 13 of Juday 2, Eq. (11) is our guide to the selection of the optimal filter value for

the m-th frequency. If P,,, is zero, we select forH,, the realizable value that has the

largest projection in the direction of VmJ . If P,,, is not zero, we compute an ideal value

Z  S'm r , "_]
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and then select for H,, the realizable value that is closest by Euclidean measure. The

effect of the additive noise is to change the maximum-projection filter toward matched-
filter behavior.

Interestingly, there is a strong similarity with the initial formulation of the synthetic

discriminant function 4 (SDF) for noiseless input. In that approach a linear sum of

training images was sought that would cause exactly the desired central correlation

intensities. There were two flaws in that approach; the computed filter was not realizable

and the tools to handle the mapping onto a filter encoding domain were not at hand, and

the method needlessly specified certain complex correlation values that were not founded

in the observation of intensity.

4. Physical results

We have gotten confirming optical bench results, but there is not room to show

them here. A subsequent paper will explore some practical issues including search

strategies, convergence in the search, limitation on how many training images can be put

into a filter, selecting among operating curves for various noise environments, etc.
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